Captured metagenomics: large-scale targeting of genes based on ‘sequence capture’ reveals functional diversity in soils

نویسندگان

  • Lokeshwaran Manoharan
  • Sandeep K. Kushwaha
  • Katarina Hedlund
  • Dag Ahrén
چکیده

Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities

Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We inc...

متن کامل

Bacterial Physiological Adaptations to Contrasting Edaphic Conditions Identified Using Landscape Scale Metagenomics

Environmental factors relating to soil pH are important regulators of bacterial taxonomic biodiversity, yet it remains unclear if such drivers affect community functional potential. To address this, we applied whole-genome metagenomics to eight geographically distributed soils at opposing ends of a landscape soil pH gradient (where "low-pH" is ~pH 4.3 and "high-pH" is ~pH 8.3) and evaluated fun...

متن کامل

Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins.

To gain insight into the diversity and origins of antibiotic resistance genes, we identified resistance genes in the soil in an apple orchard using functional metagenomics, which involves inserting large fragments of foreign DNA into Escherichia coli and assaying the resulting clones for expressed functions. Among 13 antibiotic-resistant clones, we found two genes that encode bifunctional prote...

متن کامل

Editorial: From Genes to Species: Novel Insights from Metagenomics

The majority of microbes in many environments are considered " as yet uncultured " and were traditionally considered inaccessible for study through the microbiological gold standard of pure culture. The emergence of metagenomic approaches has allowed researchers to access and study these microbes in a culture-independent manner through DNA sequencing and functional expression of metagenomic DNA...

متن کامل

Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils

Viral community structures in complex agricultural soils are largely unknown. Electron microscopy and viromic analyses were conducted on six typical Chinese agricultural soil samples. Tailed bacteriophages, spherical and filamentous viral particles were identified by the morphological analysis. Based on the metagenomic analysis, single-stranded DNA viruses represented the largest viral componen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015